Iron(II) Active Species in Iron–Bisphosphine Catalyzed Kumada and Suzuki–Miyaura Cross-Couplings of Phenyl Nucleophiles and Secondary Alkyl Halides

نویسندگان

  • Stephanie L. Daifuku
  • Jared L. Kneebone
  • Benjamin E. R. Snyder
  • Michael L. Neidig
چکیده

While previous studies have identified FeMes2(SciOPP) as the active catalyst species in iron-SciOPP catalyzed Kumada cross-coupling of mesitylmagnesium bromide and primary alkyl halides, the active catalyst species in cross-couplings with phenyl nucleophiles, where low valent iron species might be prevalent due to accessible reductive elimination pathways, remains undefined. In the present study, in situ Mössbauer and magnetic circular dichroism spectroscopic studies combined with inorganic syntheses and reaction studies are employed to evaluate the in situ formed iron species and identify the active catalytic species in iron-SciOPP catalyzed Suzuki-Miyaura and Kumada cross-couplings of phenyl nucleophiles and secondary alkyl halides. While reductive elimination to form Fe(η(6)-biphenyl)(SciOPP) occurs upon reaction of FeCl2(SciOPP) with phenyl nucleophiles, this iron(0) species is not found to be kinetically competent for catalysis. Importantly, mono- and bis-phenylated iron(II)-SciOPP species that form prior to reductive elimination are identified, where both species are found to be reactive toward electrophile at catalytically relevant rates. The higher selectivity toward the formation of cross-coupled product observed for the monophenylated species combined with the undertransmetalated nature of the in situ iron species in both Kumada and Suzuki-Miyaura reactions indicates that Fe(Ph)X(SciOPP) (X = Br, Cl) is the predominant reactive species in cross-coupling. Overall, these studies demonstrate that low-valent iron is not required for the generation of highly reactive species for effective aryl-alkyl cross-couplings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic Structure and Bonding in Iron(II) and Iron(I) Complexes Bearing Bisphosphine Ligands of Relevance to Iron-Catalyzed C–C Cross-Coupling

Chelating phosphines are effective additives and supporting ligands for a wide array of iron-catalyzed cross-coupling reactions. While recent studies have begun to unravel the nature of the in situ-formed iron species in several of these reactions, including the identification of the active iron species, insight into the origin of the differential effectiveness of bisphosphine ligands in cataly...

متن کامل

Suzuki-Miyaura cross-coupling reaction catalyzed using highly efficient CN-dimeric ortho-palladated complex under microwave irradiation and conventional heating

Suzuki cross-coupling reaction of different aryl halides with arylboronic acids was successfully carried out in methanol using ortho-palladated complex of 2-methoxyphenethylamine. All substrates afforded the corresponding products in good to high yields in the presence of low amounts of this complex as efficient and active catalyst. Application of microwave irradiation improved the yields of th...

متن کامل

Suzuki-Miyaura cross-coupling reaction catalyzed using highly efficient CN-dimeric ortho-palladated complex under microwave irradiation and conventional heating

Suzuki cross-coupling reaction of different aryl halides with arylboronic acids was successfully carried out in methanol using ortho-palladated complex of 2-methoxyphenethylamine. All substrates afforded the corresponding products in good to high yields in the presence of low amounts of this complex as efficient and active catalyst. Application of microwave irradiation improved the yields of th...

متن کامل

Mild and phosphine-free iron-catalyzed cross-coupling of nonactivated secondary alkyl halides with alkynyl Grignard reagents.

A simple protocol for iron-catalyzed cross-coupling of nonactivated secondary alkyl bromides and iodides with alkynyl Grignard reagents at room temperature has been developed. A wide range of secondary alkyl halides and terminal alkynes are tolerated to afford the substituted alkynes in good yields. A slight modification of the reaction protocol also allows for cross-coupling with a variety of ...

متن کامل

Z-Selective Olefin Synthesis via Iron-Catalyzed Reductive Coupling of Alkyl Halides with Terminal Arylalkynes

Selective catalytic synthesis of Z-olefins has been challenging. Here we describe a method to produce 1,2-disubstituted olefins in high Z selectivity via reductive cross-coupling of alkyl halides with terminal arylalkynes. The method employs inexpensive and nontoxic catalyst (iron(II) bromide) and reductant (zinc). The substrate scope encompasses primary, secondary, and tertiary alkyl halides, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 137  شماره 

صفحات  -

تاریخ انتشار 2015